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A B S T R A C T

Deep learning methods using multimodal imagings have been proposed for the diagnosis of Alzheimer’s disease
(AD) and its early stages (SMC, subjective memory complaints), which may help to slow the progression of the
disease through early intervention. However, current fusion methods for multimodal imagings are generally
coarse and may lead to suboptimal results through the use of shared extractors or simple downscaling stitching.
Another issue with diagnosing brain diseases is that they often affect multiple areas of the brain, making it
important to consider potential connections throughout the brain. However, traditional convolutional neural
networks (CNNs) may struggle with this issue due to their limited local receptive fields. To address this, many
researchers have turned to transformer networks, which can provide global information about the brain but
can be computationally intensive and perform poorly on small datasets. In this work, we propose a novel
lightweight network called MENet that adaptively recalibrates the multiscale long-range receptive field to
localize discriminative brain regions in a computationally efficient manner. Based on this, the network extracts
the intensity and location responses between structural magnetic resonance imagings (sMRI) and 18-Fluoro-
Deoxy-Glucose Positron Emission computed Tomography (FDG-PET) as an enhancement fusion for AD and SMC
diagnosis. Our method is evaluated on the publicly available ADNI datasets and achieves 97.67% accuracy in
AD diagnosis tasks and 81.63% accuracy in SMC diagnosis tasks using sMRI and FDG-PET. These results achieve
state-of-the-art (SOTA) performance in both tasks. To the best of our knowledge, this is one of the first deep
learning research methods for SMC diagnosis with FDG-PET.
1. Introduction

Alzheimer’s Disease (AD) is a common neurodegenerative condition
that eventually leads to irreversible neuronal injury. Due to its irre-
versible nature [1], it is increasingly important to identify AD in its
early stages. Subjective Memory Complaints (SMC) are often the first
stage of AD, and are therefore an important focus of research [2]. Many
studies [3–5] have found that a range of neuroimaging biomarkers can
be used to diagnosis both AD and SMC. Structural magnetic resonance
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imaging (sMRI) is a noninvasive method that can detect high-resolution
structural changes in the brain caused by atrophy, such as changes
in thickness, volume, shape, and texture [6]. Similarly, 18-Fluoro-
Deoxy-Glucose Positron Emission computed Tomography (FDG-PET)
uses radioactive tracers to track cerebral metabolic rate of glucose
reflecting hemodynamic and detect changes in brain function [7].

Recently, Deep learning methods have demonstrated excellent per-
formance on high-dimensional complex data, and have been widely
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applied to the diagnosis of AD [6]. These methods typically involve
three basic steps: (1) identifying regions of interest (ROI), (2) extracting
features, and (3) constructing classification models. In the ROI iden-
tifying step, brain imaging data is often automatically divided into
multiple brain regions using the generic template AAL (Automated
Anatomical Labeling) [6], or determined manually based on relevant
brain regions in anatomy [8]. For feature extraction, existing net-
works can be classified into 2D-based, 3D-based, and transformer-based
networks according to their architecture. 2D-based networks perform
classification by extracting voxel-level and slice-level features with
a small number of network parameters, but may result in a loss of
spatial information [9,10]. 3D-based networks construct 3D convolu-
tions to natively extract spatial contextual information from original
images, but are limited by the local receptive field of convolutions,
which can make it challenging to establish long-range dependencies
on inter-regional connections [11,12]. Transformer-based networks can
obtain arbitrary receptive field through patch embedding and attention
mechanisms, but require significant computational effort and may not
perform optimally on small datasets [12,13]. For model construction,
most existing deep learning methods combine feature extraction and
classification into an end-to-end network. In the following, we will
present deep learning methods for single-modality and multi-modality
based on sMRI and FDG-PET for the diagnosis of AD and SMC.

Based on sMRI, Chen et al. [10] extracted multi-view slice features
and global structural features using multiple slice-level and subject-
level subnetworks, which ignored complex spatial information. Liu
et al. [9] proposed a joint learning multi-task network that performed
hippocampus segmentation and then extracted corresponding features
for classification. This manual extraction of regional features reduces
the number of learnable parameters in the network, but ignores global
information, such as minor atrophy throughout the brain. In addition,
Li et al. [14] divided 3D images into patches and then clustered
them into multiple densenets for training. Lian et al. [15,16] extracted
discriminative regions using weak supervision and combined them with
a hybrid multi-level network. These methods use 3D raw images to
obtain rich contextual information with certain interpretability, but
either rely heavily on prior knowledge or perform localization and
diagnosis independently. Therefore, we aim to provide an end-to-end
task-oriented network that expands the receptive field to establish long-
range dependencies for AD and SMC classification and the localization
of discriminative regions.

As for FDG-PET, Cui et al. [17] extracted the radiological features
of brain regions delineated by the AAL template, and enhanced the
connections between these regions by incorporating a bilinear pooling
mechanism into their network. Guo et al. [18] designed a hierarchi-
cal graph convolutional network (GNN) to overcome the limitation
of Euclidean distance, and used the corresponding features of brain
regions delineated by the AAL template as graph nodes for clustering
and classification. These methods rely on prior knowledge to simplify
high-dimensional images with a small number of model parameters,
but this approach can lead to the loss of a significant amount of
original spatial information and can be difficult as methods on sMRI to
interpret for localizing discriminative regions. To address these issues,
Pan et al. [11] used separable convolution to learn representations from
axial, coronal, and sagittal views from slice-wise to spatial-wise succes-
sively, which preserves spatial information and reduces the number of
training parameters compared to 2D and 3D networks. Islam et al. [19]
used a simple 3D network to classify PET images and visualize the
whole brain. Yee et al. [20] proposed a 3D network with residual
connections. However, these networks often have large numbers of
parameters, which make them prone to overfitting.

In addition to using a single modality, several studies [21,22] have
demonstrated that combining multi-modality data, such as sMRI and
FDG-PET can help diagnosis of AD. Huang et al. [21] selected the hip-
pocampal region as the ROI in both sMRI and FDG-PET modalities, and
2

trained them on two separate VGG-11 networks which then flattened
and directly concatenated. Liu et al. [23] developed a cascaded deep
CNN to learn multi-level and multimodal features, dividing the original
images into multiple equal-sized patches for feature extraction, and
then concatenating them for classification. These approaches enable
interaction between the two modalities through the use of a shared
feature extractor or simple dimensionality reduction and concatenation.
However, these methods make it challenging to visualize features for
interpretation and lead to adequately consider the correlation, comple-
mentarity, and heterogeneity between different modalities by treating
the two modalities equally and simply fusing the features.

To sum up, we propose a novel multimodal cross enhanced fusion
network with a multiscale long-range receptive field for the diagnosis
of AD and SMC. Specifically, we uniformly divide the 3D image into
patches and operate directly on them as input. We then extract features
using a multiscale long-range receptive fields and separate the mixture
of spatial and channel dimensions guided by channel-attention. Finally,
the spatial and channel responses between the features of sMRI and
FDG-PET are complementarily enhanced and fused by our efficient
Cross Enhanced Fusion mechanism. In addition, we use patch-level
localization of discriminative information for clinical diagnosis.

Our main contributions are as follows:

1. We propose a patch-based efficient 3D Multimodal cross En-
hanced fusion Network (MENet) that can localize discriminative
regions and diagnose AD and SMC without prior knowledge, and
it performs highly competitively. To the best of our knowledge,
this is one of the first studies to classify SMC vs. NC with
FDG-PET using deep a learning approach.

2. We design a multiscale long-range reception module (MLR) that
dynamically recalibrates the cross-dimensional feature weights
guided by channel attention. This mechanism allows us to ob-
tain features at various scales without increasing the channel
dimension and computational complexity.

3. We propose a cross enhanced fusion mechanism to empha-
size the correlation and complementarity between features of
sMRI and FDG-PET, which helps to enhance local discriminative
capability on the patch-level.

The rest of this paper is organized as follows. Section 2 introduces
the materials we used. Section 3 introduces the proposed method in
detail. In Section 4, we compare our method with previous studies,
conduct the ablation study, verify the effect of region localization and
discuss the limitations. Finally, this paper is concluded in Section 5.

2. Materials

2.1. Data acquisition

The data we used in this work are from the publicly available
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. We se-
lect the 1.5T and 3T T1-weighted sMRI data and the 18-F FDG-PET data
which are obtained in a state of rest with 30–35 min with 185 ± 18.5
MBq FDG. These data are from 536 subjects, including 254 NC subjects,
98 SMC subjects, and 184 AD subjects. Note that for subjects that
appear in multiple datasets of ADNI, we only keep one of them. Table 1
summarizes the demographic and clinical information of the subjects in
the dataset.

2.2. Image preprocessing

In our work, the sMRI and FDG-PET data are from various sites,

in which the sMRI data are collected using a variety of scanners with
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Fig. 1. The architecture of MENet. The MENet consists of two symmetrical branches and a fusion branch. The sMRI and FDG-PET images are input into the MLR module to
adaptively extract features in the multiscale receptive field, the CEF module extracts the response across sMRI and PDG-PET modalities for cross enhanced fusion to obtain the
final classification result.
Fig. 2. The architecture of Multiscale Long-range Receptive Field Module. This module consists of an MRF and a CAG block. The MRF block is responsible for efficiently acquiring
multi-scale receptive field information, while the CAG block is responsible for adaptive calibrating channel-wise information to skew available computing resources to relatively
important information. DConv𝑖 denotes depth-wise convolutions with kernel size 𝑘𝑖.
Table 1
Demographic information of the subjects. The gender is presented as male/female, Age,
Mini-Mental State Examination (MMSE) scores, and education years are presented as
mean ± standard deviation.

Type Gender(M/F) Age(years) MMSE Education

NC 168/87 74.48 ± 6.48 26.60 ± 3.78 15.78 ± 3.02
SMC 70/31 74.94 ± 6.11 26.39 ± 3.48 15.19 ± 2.98
AD 116/70 74.10 ± 7.15 26.77 ± 3.64 16.19 ± 2.99

protocols customized to each scanner, while the same patient has more
than one FDG-PET data. ADNI reviews the sMRI data and corrects
them by B1 field inhomogeneity and gradient nonlinearity. We process
these data as follows, for sMRI: (1) motion correction and conform;
(2) Non-Uniform intensity normalization by N3 algorithm [24]; (3)
Talairach transform computation; (4) Intensity normalization; (5) Skull
stripping and Affine registration by using FreeSurfer (https://fsl.fmrib.
ox.ac.uk/); then (6) spatial normalization to the Montreal Neurological
Institute (MNI) space with the resolution of 3mm×3mm×3mm using the
Statistical Parametric Mapping (SPM) [25]; (7) smooth with 8 mm by
MATLAB2020a. For each FDG-PET data, we (1) remove the data with
head movement over 2 mm, and average the multiple PET images of
the same patient; (2) linearly align with its corresponding sMRI scan;
(3) intensity normalize by min–max scaling; (5) spatial normalize to the
MNI space; (6) convert to uniform isotropic resolution by SPM12 with
an 8 mm full-width half-maximum (FWHM) Gaussian filter. Finally, the
size of sMRI and FDG-PET images is 91 × 109 × 91.
3

3. Methods

3.1. Architecture

As shown in Fig. 1, the MENet mainly consists of a Multiscale
Long-range Reception (MLR) module and a Cross Enhanced Fusion
(CEF) module. Specifically, the preprocessed data are first divided into
non-overlapping patches as inputs, then our MENet extracts features
in different receptive fields and uses attention to recalibrate feature
weights to obtain information that contributes to the diagnosis. Finally,
the structural and metabolic features of sMRI and FDG-PET are comple-
mentarily enhanced and fused by the CEF module for the diagnosis of
AD and SMC.

3.2. Multiscale long-range reception module

The module described in Fig. 2 is inspired by ConvmixerNet [14]
and consists of a patch embedding layer followed by two novel blocks:
the Multiscale Receptive Field (MRF) block and the Channel-Attention-
Guided (CAG) block. Unlike other methods that pre-divide images
into patches, we use a simple convolution to embed the images into
patches of size 𝑝, embedding dimension 𝑑. This is achieved by using
a convolution with 𝑐 input channels, 𝑑 output channels, kernel size 𝑝,
and stride 𝑝:

𝑋0 = 𝐹𝑝𝑎𝑡𝑐ℎ(𝑋𝑖𝑛) (1)

= 𝐵𝑁(𝜎{𝐶𝑜𝑛𝑣𝑐 (𝑋𝑖𝑛, 𝑠𝑟𝑖𝑑𝑒 = 𝑝, 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 𝑝)})

https://fsl.fmrib.ox.ac.uk/
https://fsl.fmrib.ox.ac.uk/
https://fsl.fmrib.ox.ac.uk/
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3.2.1. Multiscale receptive field (MRF) block
MLPs [26] and self-attention [27] mechanisms are able to mix

distant spatial location information, indicating that they have receptive
fields of arbitrary size. While these approaches may be more flexible
and structurally more suitable for establishing long-range dependencies
to obtain a large receptive field, CNN-based approaches with inductive
bias tend to show higher accuracy when training models on smaller
datasets [28]. Recent studies [29,30] have shown that integrating
learning mechanisms into the network can help capture spatial cor-
relations among features and enhance the representation capability of
networks.

Motivated by these findings, we introduce a multiscale receptive
field (MRF) block in our network to extract rich multiscale spatial
features from different receptive field maps and overcome the lim-
itation of local information in establishing long-range dependencies.
Specifically, we build a subnetwork with four branches, each containing
a depthwise convolution with various kernels. The input channels in
each branch have a dimension that is one-fourth of the total dimension.
The features obtained by the different convolution kernels are defined
as the information in the corresponding receptive field. This allows
us to obtain features at various scales without increasing the channel
dimension and computational complexity.

However, the network is three-dimensional and has a large channel
dimension, which leads to an increase in parameters by the second
power of the convolution kernel size (parameters = 𝐷 ×𝑊 ×𝐻 × 𝐶𝑖𝑛

2 ×
𝐶𝑜𝑢𝑡
2 × 𝑔𝑟𝑜𝑢𝑝). To solve this issue, we use depthwise convolution where

the convolution group is equal to the channel dimension. This allows
us to separate channels and regions by considering both channel and
region variations. The multiscale feature map generation function is
given by

𝑥𝑖 = 𝐶𝑜𝑛𝑣𝑐 (𝑋0, 𝑘𝑖 × 𝑘𝑖 × 𝑘𝑖, 𝐶
′) (2)

Where the 𝑘𝑖 and 𝐶 ′ = 𝐶
4 are the kernel size and the group size of

the 𝑖th branch, separately. 𝑥𝑖 ∈ R𝐶′×𝐷×𝐻×𝑊 denotes the feature map at
ifferent scales generated by convolution with different kernels. Each
eature map with a different scales of 𝑥𝑖 has a common channel dimen-
ion 𝐶 ′, and 𝑖 = 0, 1, 2, 3. Each branch independently learns multiscale
patial information and establishes cross-channel interactions locally.

.2.2. Channel-attention-guided (CAG) block
We propose an efficient Channel-Attention-Guided (CAG) block that

kews available computational resources towards relatively important
nformation by introducing input-conditional dynamics inherently in
ach branch of the feature map. This can be viewed as a self-attention
unction on the channel, and these relationships are not restricted to
he local receptive fields that convolutional filters respond to.

As shown in Fig. 2, the CAG block consists of four independent
hannel attention mechanisms in parallel and eventually in series. Each
hannel attention mechanism consists of a global average pool (GAP),
wo fully connected (FC) layers, and their corresponding activation
unctions. These elements encode global information and adaptively
ecalibrate the relationships between channels, respectively. The global
verage pooling operation is as follows,

�̃� = 𝐹𝐺𝐴𝑃 (𝑥𝑖) =
1

𝐷 ×𝑊 ×𝐻

𝐷
∑

𝑑=1

𝑊
∑

𝑤=1

𝐻
∑

ℎ=1
𝑥𝑖(𝑑,𝑤, ℎ) (3)

Where 𝐹𝐺𝐴𝑃 represents the average pooling operation. 𝑥𝑖 ∈
R𝐶′×𝐷×𝐻×𝑊 represents the feature maps in four scale receptive fields.
𝐷, 𝑊 , 𝐻 , and 𝐶 represent the depth, width, height, and channel
number of feature maps, respectively. The global average pooling
operation generates channel-related statistics, which help embed global
spatial information into channel descriptors. Each 𝑥𝑖 ∈ R𝐶′×1×1×1 is
processed by the following formula to obtain the channel attention
features with scaling activation after squeezing:
4

𝑎𝑖 = 𝜎(𝑊1𝛿(𝑊0(𝑥𝑖))) (4)
Where 𝑎𝑖 ∈ R𝐶′×1×1×1 represents the channel-wise attention of each
branch. 𝑊0 ∈ R𝐶′× 𝐶′

𝑟 and 𝑊1 ∈ R
𝐶′
𝑟 ×𝐶′

represent two fully-connected
layers (FC). 𝛿 refers to the Rectified Linear Unit function (ReLU). 𝜎
represents the excitation function, and we choose the commonly used
sigmoid function as the excitation function here.

The two FC layers effectively combine linear information between
channels, which promotes the interaction of channel information in
high and low dimensions. The excitation function assigns weights to
the channels after interacting channel-wise, fully capturing channel-
wise dependencies. After that, the recalibrated multiscale receptive
field feature map is obtained by concatenating the features of different
branches as follows,

𝑋𝑜𝑢𝑡 = 𝐶𝑎𝑡([𝑋1, 𝑋2, 𝑋3, 𝑋4]) (5)

Where 𝑋𝑜𝑢𝑡 represents the feature in the multiscale receptive field.
The pseudocode is as follows.
Algorithm 1: Multiscale Long-range Reception Mechanism

Input: A image 𝑋𝑖𝑛 of size 𝐶 ×𝐷 ×𝑊 ×𝐻
Output: A multiscale stacked receptive field feature map 𝑋𝑜𝑢𝑡

with adaptive correction
1 Split 𝑋𝑖𝑛 into 4 parts the channel-wise;
2 for i in range (0, 4) do
3 Calculate feature in different scale receptive field

𝑥𝑖 = 𝐹𝑝𝑎𝑡𝑐ℎ(𝑋𝑖𝑛);
4 Generate channel-related information 𝑥𝑖 = 𝐹𝐺𝐴𝑃 (𝑥𝑖);
5 Calculate channel attention 𝑎𝑖 ;
6 Replace the feature 𝑥𝑖 by 𝑋𝑖 = 𝑥𝑖 ⊗ 𝑎𝑖 ;
7 end
8 Concatenate the 𝑋𝑜𝑢𝑡 = 𝐶𝑎𝑡([𝑋1, 𝑋2, 𝑋3, 𝑋4])

3.3. Cross enhanced fusion module

The motivation of this module is to improve the fusion efficiency
of sMRI and FDG-PET modalities using a small number of parame-
ters while retaining important information and reducing redundancy.
Inspired by fusion methods of non-local [31] and the edge-guided
attention mechanism of CDFRegNet [32], we propose a Cross Enhanced
Fusion module including a space-wise enhancement (SWE) block, a
channel-wise enhancement (CWE) block, and a concatenate operation.
These blocks allow us to capture and exploit the spatial and chan-
nel response between the sMRI and FDG-PET features to fuse local
discriminative information at the patch level.

Specifically, the discriminative features extracted from the two
subnetworks are input to the SWE block and CWE block to realize
the spatial-wise enhancement from sMRI to FDG-PET and channel-
wise enhancement from FDG-PET to sMRI. The enhanced features
are then concatenated and processed through two FC layers, a ReLU
activation, and Batch Normalization to learn a multilevel feature rep-
resentation with improved discriminative power. Finally, we use a
softmax classification layer to diagnose each subject.

3.3.1. Spatial-wise enhancement block
In order to improve the accuracy of FDG-PET images, which can be

blurry and prone to registration bias, we utilize the location informa-
tion from sMRI features to enhance the FDG-PET features spatially. To
do this, we first reduce the dimension of the features using convolution,
then determine the spatial relationship between the FDG-PET and sMRI
features by multiplying the transposed FDG-PET features with the
sMRI features. The resulting spatial relationship is then compressed to
obtain an enhancement function, which is then applied to the origi-
nal FDG-PET features to yield the final, spatially enhanced FDG-PET
features.
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Table 2
Quantitative comparison of different architecture on the ADNI dataset for AD vs. NC and SMC vs. NC classification. The best results are marked in bold.

Modality Methods AD vs. NC SMC vs. NC Param FLOPs

ACC(%) AUC SPE(%) SEN(%) ACC(%) AUC SPE(%) SEN(%)

2DResnet18 81.40 0.8628 86.27 75.00 43.48 0.6926 95.64 22.52 4.9M 76.79G
sMRI 3DResnet10 90.70 0.9478 94.29 86.11 78.26 0.7747 88.73 52.63 14.36M 34.32G

3DViT 89.53 0.9294 92.30 86.00 81.40 0.9061 96.00 61.11 88.57M 45.12G
Ours 91.86 0.9550 92.65 91.67 81.98 0.8492 85.78 72.15 2.97M 20.19G

2DResnet18 90.70 0.9328 92.65 88.89 55.07 0.6421 58.43 47.37 4.9M 76.79G
FDG-PET 3DResnet10 94.19 0.9183 98.24 89.12 75.36 0.6705 82.68 57.89 14.36M 34.32G

3DViT 91.86 0.9389 94.12 88.51 78.26 0.5832 97.48 21.05 88.57M 45.12G
Ours 93.02 0.9437 98.48 83.33 74.56 0.7021 82.84 53.16 2.97M 20.19G

sMRI 2DResnet18 85.87 0.9543 94.23 75.00 63.77 0.7147 68.63 52.63 9.8M 153.58G
& 3DResnet10 93.02 0.9894 90.00 97.22 75.36 0.7242 88.22 47.37 28.71M 68.64G
FDG-PET 3DViT 92.61 0.9704 96.08 87.84 78.26 0.7147 91.17 42.11 176.28M 90.23G

Ours 97.67 0.9855 98.21 97.22 81.63 0.8737 85.29 72.15 8.5M 14.44G
Fig. 3. The cross enhanced fusion mechanism includes (a) SWE and (b) CWE block.
PConv1, PConv2, and PConv3 denote point-wise convolutions with 1 × 1 × 1.

As illustrated in Fig. 3, unifying the number of channels of sMRI
and FDG-PET features can be implemented as convolution with kernel
size 1, 𝑐𝑜𝑢𝑡 output channels:

𝑓 (𝑋) = 𝜎{𝐵𝑁(𝐶𝑜𝑛𝑣𝑐𝑖𝑛→𝑐𝑜𝑢𝑡 (𝑋, 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 1))} (6)

Where 𝑓 consists of a convolution, a batch normalization, and
a sigmoid function. To further reduce the computational complexity
and center on the spatial-wise features, we flatten the features in the
dimension of 𝐷, 𝑊 , and 𝐻 to obtain the two-dimensional vector 𝑋𝑃𝐸𝑇
and 𝑋𝑀𝑅𝐼 . The spatial-wise relationship 𝑟𝑠 of spatial response can be
implemented as,

𝑟𝑠 = 𝑓 (𝑋𝑃𝐸𝑇 )◦𝑓 (𝑋𝑀𝑅𝐼 )T (7)

Where 𝑋𝑃𝐸𝑇 and 𝑋𝑀𝑅𝐼 represent the input from the MLR module
of sMRI and FDG-PET, respectively. ◦ represents matrix multiplication.
Convolution is used again to reduce the relationship of spatial response
to one dimension,

𝑅𝑠 = 𝐶𝑜𝑛𝑣𝐷2𝑊2𝐻2→1(𝑟𝑠, 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 1) (8)

Where 𝑅𝑠 represents the relationship vector of spatial response
enhancement. Finally, 𝑅𝑠 is multiplied by the original FDG-PET feature
to obtain the final enhanced feature,

𝑍𝑠 = 𝑋𝑃𝐸𝑇 ⊗𝑅𝑠 (9)

Where ⊗ denotes the spatial-wise multiplication.

3.3.2. Channel-wise enhancement block
Similarly, considering that the sMRI merely reflects the basic struc-

tural changes and treats all features equally, we aim to enhance the
sMRI features by weighting them based on the metabolism intensity
5

information of FDG-PET features. This is achieved through a channel-
wise enhancement of the original sMRI features. Like in the SWE block,
we first use convolution with a kernel size of 1 to unify the 𝐷, 𝑊 ,
and 𝐻 dimensions of the sMRI and FDG-PET features, then flatten the
features in the 𝐷, 𝑊 , and 𝐻 dimensions to obtain the two-dimensional
vectors 𝑋′

𝑃𝐸𝑇 and 𝑋′
𝑀𝑅𝐼 . The channel-wise relationship 𝑟𝑐 of channel

response can be implemented as follows:

𝑟𝑐 = 𝑓 (𝑋′
𝑃𝐸𝑇 )◦𝑓 (𝑋

′
𝑀𝑅𝐼 )

T (10)

Where 𝑋′
𝑃𝐸𝑇 and 𝑋′

𝑀𝑅𝐼 represent the input from the MLR module
of sMRI and FDG-PET, separately. Convolution is used again to reduce
the relationship of spatial response,

𝑅𝑐 = 𝐶𝑜𝑛𝑣𝑐1→1(𝑟𝑐 , 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 1) (11)

Where 𝑅𝑐 represents the relationship vector of channel response
enhancement. Finally, the vector 𝑅𝑐 is multiplied by the original sMRI
feature to obtain the final enhanced feature,

𝑍𝑐 = 𝑋𝑀𝑅𝐼 ⊙𝑅𝑐 (12)

Where ⊙ denotes the channel-wise multiplication.
After applying these two enhancement blocks to the original fea-

tures, we obtain PET-enhanced features 𝑍𝑃𝐸𝑇 based on spatial-wise lo-
cation information and MRI-enhanced features 𝑍𝑀𝑅𝐼 based on channel-
wise intensity information. Finally, we concatenate them using the
following formula,

𝑍𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓 (𝑍𝑀𝑅𝐼 ⊕𝑍𝑃𝐸𝑇 ) (13)

Where the 𝑍𝑜𝑢𝑡𝑝𝑢𝑡 represents the final fusion features. ⊕ denotes the
concatenate operation.

3.4. Implementation

3.4.1. Training parameter setting
The proposed MENet is implemented on a single GPU (i.e., NVIDIA

GeForce 3090 24 GB), using Python based on the PyTorch package.
The stochastic gradient descent (SGD) optimizer is used with the mo-
mentum of 0.9, weight decay of 0.001, and batch size of 8. Training is
conducted for 500 epochs using the cross-entropy loss with an initial
learning rate of 0.01 that is decreased by a factor of 10 after every 100
epochs.

3.4.2. Baseline training strategy
The baseline training strategy consists of two parts: feature ex-

traction and cross enhanced fusion. In the first part, we train the
two subnetworks separately using features extracted from sMRI and
FDG-PET. Each subnetwork consists of two convolutional layers, a
ReLU activation, and batch normalization. Once these subnetworks
have converged from scratch by minimizing the cross-entropy loss, we
concatenate them and freeze the parameters to train the remaining
CEF module and part of the classification prediction. Finally, the net-
work obtains the multiscale stacked receptive field features guided by
channel attention.
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Table 3
Quantitative comparison of state-of-the-art methods on the ADNI dataset for AD vs. NC classification.
Modality Methods Year Data(AD/NC) ACC(%) AUC SPE(%) SEN(%)

Lian et al [15] 2020 199/229 90.30 0.9510 96.50 82.40
sMRI Guan et al [33] 2021 367/436 89.92 0.9401 91.70 87.65

Han et al [34] 2022 408/773 91.60 0.9660 93.50 89.20
Ours 2022 186/253 91.86 0.9550 92.00 91.67

Hao et al [6] 2020 211/160 92.66 0.9300 84.04 87.65
FDG- Liu et al [22] 2021 93/100 91.20 0.9530 91.00 91.40
PET Cui et al [17] 2022 198/263 89.36 0.9574 89.47 89.29

Ours 2022 186/253 93.02 0.9437 98.48 83.33

sMRI Huang et al [21] 2019 465/480 89.11 0.9269 87.77 90.24
& Lin et al [35] 2021 362/308 89.26 0.9098 96.48 82.69
FDG- Pan et al [36] 2021 440/368 93.05 0.9723 90.91 94.74
PET Ours 2022 186/253 97.67 0.9855 98.21 97.22
Table 4
Quantitative comparison of state-of-the-art methods on the ADNI dataset for SMC vs. NC classification.
Modality Methods Year Data(SMC/NC) ACC(%) AUC SPE(%) SEN(%)

Lin et al [37] 2022 113/112 65.93 0.6300 64.48 76.92
sMRI Chen et al [38] 2022 35/36 78.87 0.8600 80.00 77.78

Jia et al [39] 2022 26/50 73.04 0.7559 38.75 91.33
Ours 2022 101/253 81.98 0.8492 85.78 72.15

AV45PET Ilker et al [40] 2019 100/100 52.90 – 45.70 60.00
FDG-PET Ours 2022 101/253 74.56 0.7021 82.84 53.16

sMRI&FDG-PET Ours 2022 101/253 81.63 0.8737 85.29 72.15
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3.4.3. Data augmentation
As the amount of publicly available ADNI data is small, we perform

some data augmentation to mitigate the overfitting problem as follows.
50% of the training set is augmented online by a combination of (1)
randomly affine transforming (angle range in radians is 𝜋∕36, 𝜋∕18,
𝜋∕18), (2) randomly flipping in the axial plane, and (3) randomly
rescaling in the range of 0.9 and 1.1.

4. Results and discussion

To evaluate the performance of our proposed method, we compare
it with several different architectures and the state-of-the-art (SOTA)
methods. We also validate the effectiveness of the key components
of our method, including the MLR module and the CEF module, and
verify the automatically identified multiscale discriminative locations.
All models are trained using 5-fold cross-validation, and four common
metrics are used to quantify the performance for both AD vs. NC
and SMC vs. NC classification tasks: area under the receiver operat-
ing characteristic curve (AUC), accuracy (ACC), specificity (SPE), and
sensitivity (SEN).

4.1. Competing methods

4.1.1. Comparison with different architecture
In this set of experiments, we compare our MENet with several

mainstream classification architectures, including (1) 2D-CNN-based
models, i.e., Resnet18, (2) 3D-CNN-based models, i.e., Resnet10, and
3) Transformer models, i.e., ViT. To accommodate the different input
equirements of these architectures, we use the following approaches:
or 2D-CNN-based networks, we split and splice the data according
o the slicing direction for training; for 3D-CNN-based networks, we
se the original images; for the ViT-based model, we apply 3D patch
mbedding of size 7*7*7 with a projection dimension of 1024. For
ingle-modality experiments, we use the features extraction subnetwork
escribed in Section 3.4.2, followed by two convolutional layers, a
eLU activation, and batch normalization. For multi-modality exper-

ments, we replicate this subnetwork to create a parallel network,
oncatenate them, and use a softmax to obtain the classification results.
e compare the performance of these models with ours in sMRI,

DG-PET, and multi-modality, and the results are shown in Table 2.
6

Overall, our proposed method achieves the highest values of the
valuation metrics compared to the other methods. Firstly, 3D-CNN-
ased, ViT-based, and our method significantly improve the perfor-
ance of both AD vs. NC and SMC vs. NC classification tasks compared

o 2D-CNN-based networks, suggesting that high-dimensional informa-
ion directly extracted from the original 3D image can better reflect
ts complete information. Secondly, the parameters of our MENet are
lways the smallest among the compared methods, yet it still performs
ell. While the accuracy of 3DResnet is better than ours for FDG-
ET single-modality classification of AD vs. NC, it has much more
arameters. Finally, all the networks perform worse in the SMC vs.
C tasks based on FDG-PET single-modality, which we believe may be
ue to the early functional metabolic situation being less obvious or
ven absent. Jiang et al. [41] similarly found that FDG-PET may not be
elpful for SMC vs. NC classification, which aligns with our suspicion.

.1.2. Comparison with SOTA methods
In this set of experiments, we compare our MENet with the state-

f-the-art comparison methods. While the datasets and data volumes
sed in each study are different, and the network parameters are not
vailable for comparison, we can broadly compare the classification
etrics of each method across different models. The results for the AD

roup and SMC group are shown in Tables 3 and 4.
For the AD vs. NC classification tasks, our network’s results are

enerally comparable to the most advanced results in both single-
odality and multi-modality. This suggests that the idea of patch

mbedding in VIT can be integrated with CNNs to extract stronger
eature representation than manually extracted features and establish
ong-range dependencies.

For the SMC vs. NC classification tasks, to the best of our knowledge,
here are no deep learning methods for NC and SMC classification using
DG-PET, and our work fills the gap in research. Our proposed method
utperforms existing work in both single-modality and multi-modality
erms, indicating that it is sensitive to subtle brain changes. We also
bserve that the results for FDG-PET are worse than those of sMRI,
ossibly because there is no significant decrease in brain metabolism
n SMC subjects [41–43].
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Table 5
Quantitative comparison of ablation experiments for each module on the ADNI dataset for AD vs. NC AND SMC vs. NC classification.
Modality Methods Kernel AD vs. NC SMC vs. NC Param FLOPs

ACC(%) AUC SPE(%) SEN(%) ACC(%) AUC SPE(%) SEN(%)

BL 3 81.40 0.8383 88.39 72.22 71.01 0.7232 78.08 52.63 1.9M 39.37G
BL 5 86.05 0.9089 92.37 77.78 79.15 0.8346 79.41 78.48 2.1M 9.66G

sMRI BL 7 87.21 0.9167 84.35 91.67 78.09 0.8348 80.88 70.89 2.55M 4.78G
BL 9 84.88 0.9006 82.53 88.89 75.36 0.7158 90.20 36.84 3.34M 3.18G
BL 3+5+7+9 88.37 0.9383 86.76 91.67 78.45 0.8590 79.90 74.68 2.96M 20.18G
BL+MLR 3+5+7+9 90.70 0.9439 90.69 91.67 81.98 0.8492 85.78 72.15 2.97M 20.19G

BL 3 83.24 0.9135 75.68 89.22 70.32 0.5775 94.12 8.86 1.9M 39.37G
BL 5 89.53 0.9278 96.15 80.56 71.73 0.7141 81.37 46.84 2.1M 9.66G

FDG-PET BL 7 90.70 0.8770 95.59 65.79 70.32 0.7016 73.53 62.03 2.55M 4.78G
BL 9 93.18 0.9798 94.12 91.89 72.79 0.6657 84.80 41.77 3.34M 3.18G
BL 3+5+7+9 93.02 0.9439 98.53 83.33 73.85 0.8077 72.06 78.48 2.96M 20.18G
BL+MLR 3+5+7+9 94.19 0.9877 96.64 94.10 74.56 0.7021 82.84 53.16 2.97M 20.19G

BL 3 81.40 0.8528 82.35 80.56 72.46 0.7600 80.88 52.63 3.28M 76.59G
BL 5 89.53 0.9367 92.16 86.11 75.27 0.7781 90.69 35.44 3.68M 18.86G

sMRI BL 7 92.61 0.9681 91.22 93.63 76.81 0.7284 90.69 42.11 4.57M 9.35G
& BL 9 92.33 0.9660 92.57 92.16 75.36 0.7463 92.65 31.58 6.16M 6.29G
FDG-PET BL 3+5+7+9 94.19 0.9850 92.16 97.21 76.68 0.8266 72.15 78.43 5.93M 34.16G

BL+MLR 3+5+7+9 95.35 0.9894 94.61 96.17 79.71 0.7579 96.15 36.84 5.95M 34.17G
BL+MLR+CEF(Ours) 3+5+7+9 97.67 0.9855 98.21 97.22 81.63 0.8737 85.29 72.15 8.05M 35.35G
4.2. Ablation study on the network

4.2.1. Baseline
To verify the effectiveness of each module, we propose two baseline

models: a single-model and a multi-model. The single-model consists
of two ordinary convolutions, a depthwise convolution, and a sigmoid
function. The multi-model consists of two single-models in parallel that
are concatenated at the end. We compare the results of these mod-
els using different kernel sizes for the depthwise convolution, which
corresponds to different receptive fields.

According to Table 5, we observe that the results for single-model
based on sMRI are better with convolution kernels of size 5 and 7, while
larger convolution (i.e., kernel = 9) perform better for single-model
ased on FDG-PET. This supports the effectiveness of our MRF and
AG blocks, which automatically select the more important features
f each mode based on their importance and allocate computing re-
ources to relatively important information. In the multi-model, we find
hat simply concatenating the two branches does not always result in
etter performance than the single-model, which confirms that simple
oncatenate is not sufficient to achieve optimal mode fusion.

.2.2. Multiscale long-range reception module
To verify the effectiveness of the MRF block, we replace the depth-

ise convolution with our proposed parallel multiscale convolution
n both single-model and multi-model baseline models. As illustrated
n Table 5, in both AD and SMC classification tasks, the model with
he MRF block outperforms the baseline model with a single kernel
onvolution, indicating that it can perceive subtle changes and establish
ong-range dependencies when it has local and large-scale receptive
ields.

In the experiment of verify the CAG block, we add the CAG block to
he model with the MRF block. As illustrated in Table 5, simple stacking
peration different scales of information performs worse tha channel-
ttention-guided stacking. The CAG block consumes few parameters
nd exhibits better performance, demonstrating that it effectively filters
he rich feature information obtained from the MRF block and reduces
eature redundancy while improving classification performance.

.2.3. Cross enhanced fusion module
To verify the effectiveness of the CEF module, the experiment is

ivided into two parts: (1) applying the feature enhancement (SWE and
WE blocks) after the original multimodel and inputting the sigmoid

unction to obtain classification scores; (2) performing feature enhance-
ent and concatenating after joining the network with the MLR module
7

o obtain classification scores.
As shown in Table 5, the classification of AD and SMC are improved
after feature enhancement in the original multi-model. The ACC are
improved by 2.34% in the AD task, and by 1.92% in the SMC task.
The results of the network with the CEF module after the MLR module
are superior to all other experiments, indicating that the SWE and CWE
blocks can effectively capture the spatial and channel response between
sMRI and FDG-PET modalities to fuse local discriminative information
at the patch-level.

4.3. Results on one-vs-all tasks

Given the presence of the three classes of NC, SMC and AD are
mixed in clinical populations, the performance of our proposed method
in real-world scenarios is explored through three one-vs-all downstream
tasks. The experimental procedure is consistent with that described
above and the results are presented in Fig. 4. Generally, the results
indicate that the ACC of all groups improved following modality fusion
as compared to their single modal counterparts, with better perfor-
mance in the distinction of AD-vs-all. However, the performance of the
PET-based results is inferior to that of the MRI results, which may be
attributed to the introduction of difficult samples in the SMC category.
The distinction between NC-vs-all performs better than the distinction
between SMC-vs-all, which aligns with the typical progression of AD,
with early Symptomatic Mild Cognitive Impairment patients being the
most challenging to differentiate.

4.4. Localization of discriminative region on the patch-level

Our proposed method can automatically identify brain structural
and metabolic anomalies in whole-brain images in sMRI and FDG-PET
using a classification task-oriented approach. As illustrated in Fig. 5,
we generate the Gradient-weighted Class Activation Mapping (Grad-
CAM) [44] for the prediction returned by the model in the classification
tasks for AD vs. NC and SMC vs. NC groups, respectively. Grad-CAM
uses the global average of gradients to calculate the weight of the
feature map and obtains the pixels with a positive correlation to the
category. We interpret the heat map generated by gradcam as a patch-
level localization that affects network decisions. Each gradient mapping
is displayed in three-dimensional form among multi-planes (coronal,
sagittal, and axial).

We compare the discriminative regions localized by subjects at
different patch sizes, which are not pre-delineated but learned adap-
tively by the network. In addition, we compare the differences in
discriminative brain regions among different subjects from the same
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Fig. 4. Results of (a) AD-vs-all, (b) SMC-vs-all and (c) NC-vs-all diagnosis, obtained
by the modal including MRI, PET and MRI&PET respectively.

group based on inspection of the entire dataset. For different AD sub-
jects, our method co-locates atrophy in the ventricle regions, lingual,
amygdala, fusiform, hippocampus, superior temporal gyrus, medial and
paracingulate gyrus by sMRI, while locating atrophy in the superior
cerebellum, lingual, calcarine, hippocampus, thalamus, middle tempo-
ral gyrus, middle frontal gyrus by FDG-PET. For different SMC subjects,
our method co-locates atrophy in the ventricle regions, inferior frontal
gyrus, rolandic operculum, precuneus, lingual, hippocampus, and cau-
date by sMRI, while locating atrophy in the inferior frontal gyrus,
middle frontal gyrus, superior parietal cortex by FDG-PET. The clas-
sification performance of these regions in AD and SMC are consistent
with previous clinical studies [45,46]. Among these, the discriminative
ventricle regions, lingual, hippocampus, and middle frontal gyrus are
common to both AD and SMC subjects, indicating that our method
can be useful in recommending clinical interventions for patients when
atrophy occurs in these regions.

Overall, our results show that the localization of discriminative
regions differs at different input scales, supporting the idea of the
effectiveness of our adaptive recalibration method for different scale
8

features. Additionally, the localization of discriminative regions differs
between the sMRI and FDG-PET modalities, and the dual localization
of structural atrophy and metabolic discriminative regions is helpful for
classification. Furthermore, the identification of discriminative regions
varies among different subjects within the same group, demonstrating
the adaptability of our MENet to the characteristics of discriminative
regions. Finally, the localization of our network for AD and SMC
patients is consistent to some extent, indicating a strong correlation and
recurrence between the two tasks.

4.5. Limitations and future work

Although our proposed method achieves well performance in the
diagnosis of AD and SMC, it still has many limitations at present. By
considering the following points, we hope to improve the performance
of our method. Firstly, based on the consideration of model parameters,
we fix four branches in the MRF block to adaptively obtain a multi-
scale receptive field, which means that we fixed the range of optional
receptive field in advance, lacking comparison with other combinations
of the receptive field. Extending the branches of the block or changing
the combination of branches to fully automate the selection of receptive
fields may be a solution for this problem. Secondly, due to the setting
of patch embedding at the first layer, the size of network localization
is limited by the size of patches, which indicates that we cannot obtain
more fine-grained information. We can refer to the pyramid-shaped
module to obtain the multiscale input information, and use the coarse
localization to guide more accurate discriminative localization. Thirdly,
the images lose some details after multilayer preprocessing, especially
after spatial normalization to MNI, the use of a single template leads to
potential bias which means the feature representation generated from
a single template may not be enough to reveal the potentially complex
differences between the patient group and the normal control group. It
is a worthwhile direction to compare feature extraction under different
MNI templates.

5. Conclusion

In this paper, we propose an efficient patch-based 3D convolutional
neural network named MENet for diagnosis of AD and SMC, which
can automatically localize the discriminative structural and metabolic
regions by using raw 3D data from sMRI and FDG-PET. Notably,
our MENet requires no predefined landmarks or additional location
modules (e.g., hippocampus segmentation). It requires fewer training
parameters, but has superior performance compared to existing state-
of-the-art deep-learning-based methods for diagnostic tasks in AD and
SMC.
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Fig. 5. Illustration of the patch-level grad-cam for two AD and two SMC subjects. Each subject has two modalities (sMRI and FDG-PET), each modality is displayed in 3 planes
(coronal, sagittal, and axial), and each plane has 4 types of patch-based regions.
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